Gelfand numbers related to structured sparsity and Besov space embeddings with small mixed smoothness

نویسندگان

  • Sjoerd Dirksen
  • Tino Ullrich
چکیده

We consider the problem of determining the asymptotic order of the Gelfand numbers of mixed(quasi-)norm embeddings lp(l d q) →֒ l b r(l d u) given that p ≤ r and q ≤ u, with emphasis on cases with p ≤ 1 and/or q ≤ 1. These cases turn out to be related to structured sparsity. We obtain sharp bounds in a number of interesting parameter constellations. Our new matching bounds for the Gelfand numbers of the embeddings of l 1 (l 2 ) and l 2 (l 1 ) into l 2 (l 2 ) imply optimality assertions for the recovery of block-sparse and sparse-in-levels vectors, respectively. In addition, we apply the sharp estimates for lp(l d q )-spaces to obtain new two-sided estimates for the Gelfand numbers of multivariate Besov space embeddings in regimes of small mixed smoothness. It turns out that in some particular cases these estimates show the same asymptotic behaviour as in the univariate situation. In the remaining cases they differ at most by a log log factor from the univariate bound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces

In this paper we study the Gelfand and Kolmogorov numbers of Sobolev embeddings between weighted function spaces of Besov and Triebel–Lizorkin type with polynomial weights. The sharp asymptotic estimates are determined in the so-called non-limiting case. © 2011 Elsevier Inc. All rights reserved.

متن کامل

Widths of embeddings of 2-microlocal Besov spaces

We consider the asymptotic behaviour of the approximation, Gelfand and Kolmogorov numbers of compact embeddings between 2-microlocal Besov spaces with weights defined in terms of the distance to a d-set U ⊂ R. The sharp estimates are shown in most cases, where the quasi-Banach setting is included.

متن کامل

Spaces of generalized smoothness in the critical case: Optimal embeddings, continuity envelopes and approximation numbers

We study necessary and sufficient conditions for embeddings of Besov spaces of generalized smoothness B p,q (Rn) into generalized Hölder spaces Λ μ(·) ∞,r(R) when s(Nτ−1) > 0 and τ−1 ∈ `q′ , where τ = σN−n/p. A borderline situation, corresponding to the limiting situation in the classical case, is included and give new results. In particular, we characterize optimal embeddings for B-spaces. As ...

متن کامل

Widths of embeddings in function spaces

We study the approximation, Gelfand and Kolmogorov numbers of embeddings in function spaces of Besov and Triebel-Lizorkin type. Our aim here is to provide sharp estimates in several cases left open in the literature and give a complete overview of the known results. We also add some historical remarks. AMS Classification: 41A45, 41A46, 46E35

متن کامل

Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness

We characterize local embeddings of Besov spaces B p,r involving only a slowly varying smoothness b into classical Lorentz spaces. These results are applied to establish sharp local embeddings of Besov spaces in question into Lorentz-Karamata spaces. As consequence of these results, we are able to determine growth envelopes of spaces B p,r and to show that we cannot describe all local embedding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.06781  شماره 

صفحات  -

تاریخ انتشار 2017